organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-Ethoxycarbonyl-2-hydroxy-6-methoxy-4-methylbenzoic acid

Yun-Xia Deng,^a Tao Guo,^b Hui Xie^a and Sheng-Li Pan^a*

^aSchool of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China, and ^bSchool of Life and Engineering, Lanzhou University of Technology, Lanzhou 730050, People's Republic of China Correspondence e-mail: slpan@shmu.edu.cn

Received 23 March 2012; accepted 5 April 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.057; wR factor = 0.174; data-to-parameter ratio = 12.7.

The title compound, $C_{12}H_{14}O_6$, a substituted isophthalic acid monoester which was isolated from the lichen Thamnolia vermicularis var. subuliformis, displays intramolecular carboxyl-methoxy $O-H \cdots O$ and hydroxy-carboxyl $O-H \cdots O$ hydrogen-bonding interactions. The terminal methyl group of the ethyl ester is disordered over two sets of sites with occupancies of 0.599 (19) and 0.401 (19).

Related literature

For general background to the phenol compounds isolated from the lichen Thamnolia vermicularis var. subuliformis, see: Jiang et al. (2002); Milenkovic-Andjelkovic (2010). For applications of analogs of the title compound, see: Huneck (1999).

Experimental

Crystal data

$C_{12}H_{14}O_{6}$	$\gamma = 98.072 \ (4)^{\circ}$
$M_r = 254.23$	V = 612.9 (2) Å ³
Triclinic, P1	Z = 2
a = 6.8460 (14) Å	Mo $K\alpha$ radiation
b = 8.0065 (16) Å	$\mu = 0.11 \text{ mm}^{-1}$
c = 11.469 (2) Å	T = 293 K
$\alpha = 97.059 \ (4)^{\circ}$	$0.39 \times 0.30 \times 0.11 \text{ mm}$
$\beta = 95.987 \ (4)^{\circ}$	

3352 measured reflections

 $R_{\rm int} = 0.083$

refinement

 $\Delta \rho_{\text{max}} = 0.32 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.21$ e Å⁻³

2359 independent reflections

1379 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
$T_{\rm min} = 0.245, T_{\rm max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.057$	
$wR(F^2) = 0.174$	
S = 0.91	
2359 reflections	
186 parameters	
22 restraints	

Table 1 Hydrogen-bond geometry (Å, °).

	0,	/		
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O4−H4···O2 O1−H1···O3	0.88 (2) 0.84 (2)	1.77 (3) 1.78 (3)	2.535 (3) 2.524 (3)	144 (4) 146 (4)

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2195).

References

Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Huneck, S. (1999). Naturwissenschaften, 86, 559-570.

- Jiang, B., Zhao, Q., Peng, L., Lin, Z. & Sun, H. (2002). Yunnan Zhiwu Yanjiu, 24, 525-530.
- Milenkovic-Andjelkovic, A. (2010). Planta Med. 76, 1304-1304.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2012). E68, o1420 [doi:10.1107/S1600536812015012]

3-Ethoxycarbonyl-2-hydroxy-6-methoxy-4-methylbenzoic acid

Yun-Xia Deng, Tao Guo, Hui Xie and Sheng-Li Pan

Comment

The title compound, $C_{12}H_{14}O_6$, a substituted isophthalic acid monoester, is one of the phenol compounds isolated from the lichen *Thamnolia vermicularis* var.*subuliformis* (Jiang *et al.*, 2002; Milenkovic-Andjelkovic, 2010). The X-ray structural analysis of this compound reported here confirms the assignment of its structure determined from experimental spectroscopic data. In the molecule (Fig. 1), intramolecular carboxylic acid O—H···O_{methoxy} and hydroxy O—H···O_{carboxyl} hydrogen -bonding interactions (Table 1) result in the formation of two six-membered rings. In the crystal (Fig. 2), no significant hydrogen-bonding interactions are found. The terminal methyl group of the ethyl ester is disordered over two sites with occupancies 0.599:0.401.

Experimental

Extraction of the title compound. The air-dried and powdered plant materials (5 kg) were extracted by 95% EtOH (3 times, 20*L*) at room temperature and concentrated under vacuum. The residue was partitioned with petroleum ether (PE) and EtOAc, successively. The EtOAc extract (47 g) was chromatographed on a silica gel column eluted successively with PE-EtOAc/ EtOAc–MeOH to afford six major fractions. Fraction 3 eluted with PE-EtOAc (1:3) was further purified by silica gel chromatography [CHCl₃-MeOH (15:1)] and then Sephadex LH-20 using MeOH (100%) to yield the title compound (200 mg). The solvent was removed *in vacuo* to give colorless crystals (m.p. 435–437 K). ¹*H*-NMR (CDCl₃, 400 MHz): 12.6 (1H, s, OH), 11.2 (1H, s, COOH), 6.34 (1H, s), 4.4 (2H, q, CH₂), 4.08 (3H, s, CH₃), 2.37 (3H, s, CH₃), 1.39 (3H, t, CH₃). Crystals suitable for X-ray diffraction were obtained by slow evaporation of a methanol solution.

Refinement

Hydroxy and carboxylic acid H-atoms were located in a difference-Fourier analysis and both positional and isotropic displacement parameters were refined. Other H-atoms were positioned geometrically with C—H = 0.93 Å (for aromatic H) or 0.96 or 0.97 Å (for methyl or methylene H-atoms respectively) and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2$ or 1.5 $U_{eq}(C)$. Disorder in the terminal methyl group (C12) of the ethyl ester resulted in the refinement at two sites with occupancies of 0.599 (19) (C12) and 0.401 (19) (C12').

Computing details

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT* (Bruker, 2003); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids. The disorder in the ethyl ester group is not shown. Intramolecular hydrogen bonds are shown as dashed lines.

Figure 2

The crystal packing of the title compound viewed down the *a* axis.

3-Ethoxycarbonyl-2-hydroxy-6-methoxy-4-methylbenzoic acid

Crystal data

C₁₂H₁₄O₆ $M_r = 254.23$ Triclinic, *P*1 Hall symbol: -P 1 a = 6.8460 (14) Å b = 8.0065 (16) Å c = 11.469 (2) Å $a = 97.059 (4)^{\circ}$ $\beta = 95.987 (4)^{\circ}$ $\gamma = 98.072 (4)^{\circ}$ $V = 612.9 (2) \text{ Å}^{3}$ Z = 2 F(000) = 268 $D_x = 1.378 \text{ Mg m}^{-3}$ Melting point = 435–437 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 969 reflections $\theta = 5.2-52.9^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 293 K

Data collection

Bruker SMART CCD area-detector diffractometer	3352 measured reflections 2359 independent reflections
Radiation source: fine-focus sealed tube	1379 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.083$
φ and ω scans	$\theta_{\rm max} = 26.0^{\circ}, \theta_{\rm min} = 1.8^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 8$
(SADABS; Bruker, 2003)	$k = -9 \rightarrow 7$
$T_{\min} = 0.245, \ T_{\max} = 1.000$	$l = -14 \rightarrow 13$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.057$	H atoms treated by a mixture of independent
$wR(F^2) = 0.174$	and constrained refinement

S = 0.91 $w = 1/[\sigma^2(F_0^2) + (0.0955P)^2]$ 2359 reflections where $P = (F_0^2 + 2F_c^2)/3$ 186 parameters $(\Delta/\sigma)_{\rm max} < 0.001$ 22 restraints $\Delta \rho_{\rm max} = 0.32 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: structure-invariant $\Delta \rho_{\rm min} = -0.21 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods Extinction correction: SHELXL97 (Sheldrick, Secondary atom site location: difference Fourier 2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ map Extinction coefficient: 0.036 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Prismatic, colorless

 $0.39 \times 0.30 \times 0.11 \text{ mm}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.1285 (4)	0.1888 (3)	0.3537 (2)	0.0692 (7)	
02	0.3292 (3)	0.6477 (3)	0.66405 (18)	0.0640 (7)	
03	0.1945 (4)	0.1389 (3)	0.5664 (2)	0.0771 (8)	
04	0.2762 (4)	0.3453 (3)	0.7124 (2)	0.0773 (8)	
05	-0.0464 (4)	0.3799 (4)	0.1320 (2)	0.0992 (10)	
06	0.2714 (5)	0.3547 (4)	0.1310(2)	0.0992 (10)	
C1	0.1806 (4)	0.3544 (3)	0.3938 (3)	0.0501 (8)	
C2	0.2325 (4)	0.4167 (3)	0.5141 (2)	0.0472 (7)	
C3	0.2804 (4)	0.5934 (4)	0.5465 (2)	0.0485 (7)	
C4	0.2788 (4)	0.7035 (3)	0.4632 (3)	0.0518 (8)	
H4A	0.3110	0.8204	0.4867	0.062*	
C5	0.2289 (4)	0.6395 (4)	0.3439 (3)	0.0526 (8)	
C6	0.1793 (4)	0.4666 (4)	0.3092 (2)	0.0519 (8)	

C7	0.2327 (4)	0.2914 (4)	0.5983 (3)	0.0575 (8)	
C8	0.3758 (6)	0.8247 (4)	0.7062 (3)	0.0777 (11)	
H8A	0.4967	0.8708	0.6783	0.117*	
H8B	0.3928	0.8415	0.7912	0.117*	
H8C	0.2696	0.8814	0.6777	0.117*	
С9	0.2292 (6)	0.7624 (4)	0.2541 (3)	0.0742 (10)	
H9A	0.3583	0.8302	0.2612	0.111*	
H9B	0.1317	0.8355	0.2682	0.111*	
H9C	0.1977	0.6999	0.1759	0.111*	
C10	0.1172 (6)	0.3942 (4)	0.1827 (3)	0.0668 (9)	
C11	0.2310 (10)	0.2902 (7)	0.0054 (4)	0.136 (2)	
H11A	0.1002	0.2215	-0.0116	0.164*	0.599 (19)
H11B	0.2327	0.3847	-0.0402	0.164*	0.599 (19)
H11C	0.3379	0.3382	-0.0339	0.164*	0.401 (19)
H11D	0.1099	0.3252	-0.0259	0.164*	0.401 (19)
C12	0.376 (2)	0.1907 (18)	-0.0273 (7)	0.128 (5)	0.599 (19)
H12A	0.3768	0.0993	0.0196	0.192*	0.599 (19)
H12B	0.5047	0.2605	-0.0141	0.192*	0.599 (19)
H12C	0.3461	0.1445	-0.1096	0.192*	0.599 (19)
C12′	0.213 (4)	0.107 (2)	-0.0170 (14)	0.137 (7)	0.401 (19)
H12D	0.2147	0.0720	-0.0999	0.205*	0.401 (19)
H12E	0.0899	0.0571	0.0065	0.205*	0.401 (19)
H12F	0.3219	0.0709	0.0276	0.205*	0.401 (19)
H1	0.144 (7)	0.131 (5)	0.410 (3)	0.113 (16)*	
H4	0.301 (6)	0.457 (3)	0.728 (4)	0.110 (16)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0993 (18)	0.0384 (13)	0.0710 (16)	0.0188 (11)	0.0075 (13)	0.0049 (10)
O2	0.0797 (15)	0.0543 (14)	0.0555 (14)	0.0149 (10)	-0.0031 (10)	0.0023 (9)
O3	0.1013 (19)	0.0482 (15)	0.0865 (18)	0.0195 (12)	0.0037 (13)	0.0254 (12)
O4	0.106 (2)	0.0709 (18)	0.0605 (16)	0.0252 (15)	0.0042 (13)	0.0245 (13)
O5	0.091 (2)	0.126 (3)	0.0735 (18)	0.0161 (17)	-0.0105 (15)	0.0056 (15)
O6	0.124 (2)	0.132 (3)	0.0519 (15)	0.069 (2)	0.0086 (14)	-0.0027 (13)
C1	0.0554 (17)	0.0362 (16)	0.0614 (19)	0.0177 (13)	0.0087 (13)	0.0047 (12)
C2	0.0432 (16)	0.0471 (17)	0.0572 (18)	0.0180 (12)	0.0096 (13)	0.0148 (13)
C3	0.0434 (16)	0.0484 (17)	0.0553 (18)	0.0148 (12)	0.0039 (12)	0.0065 (13)
C4	0.0540 (18)	0.0389 (16)	0.0638 (19)	0.0112 (12)	0.0069 (14)	0.0073 (13)
C5	0.0536 (18)	0.0469 (17)	0.063 (2)	0.0151 (13)	0.0113 (14)	0.0168 (14)
C6	0.0583 (18)	0.0502 (18)	0.0519 (18)	0.0197 (14)	0.0114 (14)	0.0091 (13)
C7	0.0561 (18)	0.055 (2)	0.069 (2)	0.0188 (14)	0.0095 (15)	0.0221 (15)
C8	0.096 (3)	0.056 (2)	0.072 (2)	0.0133 (18)	-0.0136 (19)	-0.0104 (16)
C9	0.093 (3)	0.061 (2)	0.072 (2)	0.0127 (18)	0.0080 (18)	0.0270 (17)
C10	0.086 (3)	0.058 (2)	0.060(2)	0.0230 (18)	0.0068 (19)	0.0108 (15)
C11	0.199 (5)	0.168 (5)	0.055 (3)	0.097 (5)	0.006 (3)	-0.006 (3)
C12	0.173 (10)	0.159 (9)	0.068 (5)	0.083 (8)	0.021 (5)	0.005 (5)
C12′	0.163 (13)	0.131 (11)	0.107 (9)	0.037 (9)	-0.003 (8)	-0.020 (7)

Geometric parameters (Å, °)

01—C1	1.334 (3)	C6—C10	1.488 (4)	
01—H1	0.84 (2)	C8—H8A	0.9600	
O2—C3	1.357 (3)	C8—H8B	0.9600	
O2—C8	1.420 (4)	C8—H8C	0.9600	
O3—C7	1.214 (4)	С9—Н9А	0.9600	
O4—C7	1.316 (4)	С9—Н9В	0.9600	
O4—H4	0.88 (2)	С9—Н9С	0.9600	
O5—C10	1.190 (4)	C11—C12	1.411 (10)	
O6—C10	1.321 (4)	C11—C12′	1.441 (15)	
O6—C11	1.453 (4)	C11—H11A	0.9700	
C1—C2	1.399 (4)	C11—H11B	0.9700	
C1—C6	1.401 (4)	C11—H11C	0.9580	
C2—C3	1.401 (4)	C11—H11D	0.9607	
C2—C7	1.475 (4)	C12—H12A	0.9600	
C3—C4	1.377 (4)	C12—H12B	0.9600	
C4—C5	1.390 (4)	C12—H12C	0.9600	
C4—H4A	0.9300	C12′—H12D	0.9600	
C5—C6	1.376 (4)	C12′—H12E	0.9600	
С5—С9	1.509 (4)	C12′—H12F	0.9600	
C1—O1—H1	110 (3)	С5—С9—Н9А	109.5	
C3—O2—C8	120.1 (2)	С5—С9—Н9В	109.5	
C7—O4—H4	113 (3)	H9A—C9—H9B	109.5	
C10-06-C11	115.9 (3)	С5—С9—Н9С	109.5	
01—C1—C2	122.7 (2)	H9A—C9—H9C	109.5	
01—C1—C6	116.8 (3)	H9B—C9—H9C	109.5	
C2-C1-C6	120.5 (3)	O5—C10—O6	123.6 (3)	
C1—C2—C3	117.9 (2)	O5—C10—C6	125.6 (3)	
C1—C2—C7	117.7 (3)	O6—C10—C6	110.8 (3)	
С3—С2—С7	124.5 (3)	C12—C11—O6	109.7 (5)	
O2—C3—C4	122.7 (3)	C12′—C11—O6	112.2 (7)	
O2—C3—C2	115.7 (2)	C12—C11—H11A	109.7	
C4—C3—C2	121.6 (3)	O6—C11—H11A	109.7	
C3—C4—C5	119.8 (3)	C12—C11—H11B	109.7	
C3—C4—H4A	120.1	O6—C11—H11B	109.7	
C5—C4—H4A	120.1	H11A—C11—H11B	108.2	
C6—C5—C4	120.1 (2)	C12′—C11—H11C	108.5	
C6—C5—C9	121.0 (3)	O6-C11-H11C	108.9	
C4—C5—C9	118.9 (3)	C12′—C11—H11D	109.6	
C5—C6—C1	120.2 (3)	O6—C11—H11D	108.5	
C5—C6—C10	121.5 (3)	H11C—C11—H11D	109.1	
C1—C6—C10	118.3 (3)	C11—C12—H12A	109.5	
O3—C7—O4	118.1 (3)	C11—C12—H12B	109.5	
O3—C7—C2	122.5 (3)	C11—C12—H12C	109.5	
O4—C7—C2	119.4 (3)	C11—C12′—H12D	109.5	
O2—C8—H8A	109.5	C11—C12′—H12E	109.5	
O2—C8—H8B	109.5	H12D—C12′—H12E	109.5	
H8A—C8—H8B	109.5	C11—C12′—H12F	109.5	

O2—C8—H8C H8A—C8—H8C H8B—C8—H8C	109.5 109.5 109.5	H12D—C12'—H12F H12E—C12'—H12F	109.5 109.5
O1—C1—C2—C3	-178.6 (2)	C9—C5—C6—C10	-2.2 (5)
C6—C1—C2—C3	0.6 (4)	O1—C1—C6—C5	179.2 (3)
O1—C1—C2—C7	1.4 (4)	C2-C1-C6-C5	-0.1 (4)
C6—C1—C2—C7	-179.4 (2)	O1-C1-C6-C10	1.1 (4)
C8—O2—C3—C4	1.8 (4)	C2-C1-C6-C10	-178.2 (3)
C8—O2—C3—C2	-178.6 (3)	C1—C2—C7—O3	1.7 (4)
C1—C2—C3—O2	179.8 (2)	C3—C2—C7—O3	-178.3 (3)
C7—C2—C3—O2	-0.2 (4)	C1—C2—C7—O4	-178.4 (3)
C1—C2—C3—C4	-0.5 (4)	C3—C2—C7—O4	1.5 (4)
C7—C2—C3—C4	179.5 (2)	C11—O6—C10—O5	-0.3 (6)
O2—C3—C4—C5	179.5 (2)	C11—O6—C10—C6	-177.2 (3)
C2—C3—C4—C5	-0.1 (4)	C5—C6—C10—O5	-83.8 (4)
C3—C4—C5—C6	0.6 (4)	C1—C6—C10—O5	94.2 (4)
C3—C4—C5—C9	-179.7 (3)	C5-C6-C10-O6	93.0 (4)
C4—C5—C6—C1	-0.5 (4)	C1—C6—C10—O6	-88.9 (4)
C9—C5—C6—C1	179.8 (3)	C10-06-C11-C12	-156.0 (9)
C4—C5—C6—C10	177.5 (3)	C10—O6—C11—C12′	-100.3 (13)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	D—H··· A	
O4—H4…O2	0.88 (2)	1.77 (3)	2.535 (3)	144 (4)	
01—H1…O3	0.84 (2)	1.78 (3)	2.524 (3)	146 (4)	